Indian Statistical Institute, Bangalore

B. Math.

First Year, First Semester
Analysis -I
Mid-term Examination
Maximum marks: 100
Date: 11 October 2022
Time: 3 hours
Instructor: B V Rajarama Bhat
(1) Let A, B, C be non-empty sets and let $f: A \rightarrow B$ and $g: B \rightarrow C$ be functions and let $h: A \rightarrow C$ be defined by $h=g \circ f$. (i) Show that if h is injective then f is injective, but g may not be injective. (ii) Give an example where f is injective and g is surjective but h is neither injective nor surjective. [15]
(2) Let $\left\{b_{n}\right\}_{n \geq 1}$ be a sequence defined by $b_{1}=2, b_{2}=5$ and $b_{n+1}=5 b_{n}-6 b_{n-1}$ for $n \geq 2$. Show that $b_{n}=2^{n-1}+3^{n-1}$ for all $n \in \mathbb{N}$.
(3) Let M be the set of all functions from \mathbb{N} to \mathbb{N}. Show that M is uncountable.
(4) Show that the set $A:=\left\{3^{n}: n \in \mathbb{N}\right\}$ is not bounded above.
(5) (i) Show that for a real number c if $c \in[-1,1]$,

$$
\left|c^{n}\right| \leq|c|, \forall n \in \mathbb{N}
$$

(ii) If $\left\{c_{n}\right\}_{n \geq 1}$ is a sequence of real numbers converging to 0 , show that $\left\{c_{n}^{n}\right\}_{n \geq 1}$ converges to 0 .
(6) Show that there exists unique positive real number s such that $s^{2}=5$. Denote this real number by $\sqrt{5}$. Show that $\sqrt{5}$ is irrational.

(7) Let $\left\{a_{n}\right\}_{n \geq 1}$ be a sequence of positive real numbers converging to 0 . Assume that $a_{n} \geq a_{n+1}$ for every natural number n. Define a sequence of real numbers $\left\{s_{n}\right\}_{n \geq 1}$ by

$$
s_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\cdots+(-1)^{n-1} a_{n} .
$$

That is, $s_{1}=a_{1}$ and $s_{n+1}=s_{n}+(-1)^{n} a_{n+1}, \forall n \geq 1$. Show that $\left\{s_{n}\right\}_{n \geq 1}$ is convergent.

